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“Two heads are better than one.”
-English Proverb
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Background and motivation: A good start is half the battle to success.

* Where are we now? « What is troubling us?
GPT-4 and lots of other LLMs has It is crucial not to overlook the
achieved exemplary performance  inherent limitations in the

across a wide range of NLP tasks.  understanding of LLMs in complex
reasoning tasks.

. What tcinate is? And this limitation cannot be

al we Cah anticipate 1S overcome solely by increasing the
The potential applications of size of models.
LLMs are immeasurable. Tasks
like reasoning demand LLMs to
possess high levels of reasoning
and comprehension abilities.

https://arxiv.orqg/abs/2312.01823
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Background and motivation: A good start is half the battle to success.

 What have we accomplished
so far?

* Chain of Thought (CoT)

Guide the model to generate a
series of intermediate reasoning
steps before reaching the final
answer. (Wei et al. 2022Db)

e Self-Correction

lteratively improve the quality of
answers by Ieverag%lnght e
model’s feedback to their
previous outputs.

Zero-shot Fine-tuning

The model predicts the answer given only a natural language

description of the task. No gradient updates are performed. large corpus of example tasks.

Translate English to French: task description sea otter == loutre de mer
h prompt
One-shot peppermint == menthe poivreée

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description
ter == loutre de mer example
chosse => _— plush giraffe == girafe peluche
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter == loutre de mer examples
peppermint == menthe poivrée

plush girafe =>

girafe peluche

cheese == prompt

A pic from: https://zhuanlan.zhihu.com/p/629087587

The model is trained via repeated gradient updates using a

example #1
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Background and motivation: A good start is half the battle to success.

* The problems associated with the above-mentioned methods are:

* Everyone’s own understanding has their inherent limitations.

LLMs using CoT and self-correction still struggle to revise their responses
without external feedbacks.

* Profound insights are hard to come by.

Despite single or multiple reasoning chains, when confronted with
difficult questions, the model often yields a higher bumber of incorrect
respense.

Got any proof?  Let refer to the next slice.



ARSI, BRI —F

Background and motivation: A good start is half the battle to success.

* Pilot experiments

In Figure 2, the analysis of
correct and

Incorrect answers within
erroneous samples from

three reasoning datasets
reveals that in most cases

the model can deduce the
correct answer but still with
many error answers.
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Figure 2: Pilot experiments on three reasoning datasets.
The number of erroneous samples containing the correct
answer 1s significantly higher than those not containing
the correct answer.

A pic from the corresponding paper.



“Truth will ultimately prevail where there is
pains to bring it to light.”
-English Proverb
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Background and motivation: A good start is half the battle to success.

* Our firsthand experiences speak volumes.

In human society, the truth, even when held by a minority,
can gain widespread acceptance and recognition through
clear and persuasive communication (Le Bon, 1897).

The correct reasoning of others can serve as high-quality
external insights, enriching and elevating our collective
understanding.



Finally! Here comes EoOT.
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What is EoT?

In a nutshell

EoT is a novel framework designed to facilitate cross-model
communication, allowing for the exchange of reasoning
processes to integrate external insights.

@%igo
¢ X%

|Is about communication!
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What is EoT? | \ = l /’\ |
Figure 1 contrasts EoT with CoT . N .
. 1 2 3
and self-correction methods. . e
[ L /fffi’:’:’fi?f;ljiliI:Eti{:;:: l
Review R, R R

Highlighting the unique appr-
oach of EoT in integrating .

external perspectives. @ @

(@) CoT (b) Self-Correction (c) EoT

EoT enhances the model’s Figure 1: Comparison of CoT, Self-Correction, and
reasoning ability by incorporating EoT. Both CoT and Self-Correction rely on the model’s

the thOUthS of other models as innate abilities to generate and refine output, lacking
) external insights. EoT enhances the model’s reasoning

external insights. ability by incorporating the thoughts of other models as
external insights.
A pic from the corresponding paper.
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What is EoT?

Meanings:

-Facilitate the exchan-
ge of ideas and reaso-
ning chains among
models.

-Enriching the diversity
of insights
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A pic from the corresponding paper.
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Inspired by the principles of network topology (Bisht and Singh, 2015) and agent

communication (Parsons and McBurney, 2003), there are four communication paradigms:

Memory, Report, Relay, and Debate.
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The final preparations - stay calm and steady,

* This paper denote a LLM with a parameter size of 6 as p®0,
and the sequence length as t, which includes tokens [s1,
s2,...,st].

* The LLM predicts the next token based on theprior tokens

in the sequer)me. The probability of the si token is pB(si | s1,
s2,...,Si-1).

» Therefore,the probability of the whole sentence is [ po(sils<i-1).

1=1
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The final preparations - stay calm and steady,

» Standard prompting.

This involves deriving an answer a from a question g using

pB(a | g). In-Context Learning aims to improve LLMs performance
by adding demonstrations D = {d1, d2, .. ., dn} to the input,
which can be expressed as pg(a|D,q) .

* CoT prompting.

A rationale ri is added to demonstration di = {qi, ri, ai} to guide the
LLMSs in explicitly generating reasoning steps.



Self-consistency Sample a diverse set of Marginalize out reasoning paths
i - F 2 to aggregate final answers

. s s e a0 reasonin g path
| L‘ — ' . ’ ———————— e I
‘E: : ) Lo n ﬂ: If there are 3 cars in the parking \ She has 16 - 3 - 4 = 9 eggs I \
= ) l:l -~ lot and 2 more cars arrive, how many left. So she makes $2*9 = | The answer is $18.
N D —— 9% cars are in the parking lot? $18 per day. |
- - A:There are 3 carslin the parking lot i
The final preparations - stay calm and steady. already. 2 moro arive. Now there are R,
® ez scars. Theanswers remainder for $2* (16 - 4 3) The answer is $26.
Q: Janet’s ducks lay 16 eggs per day. Language = $26 per day. >
She eats three for breakfast every modal ~

morning and bakes muffins for her
friends every day with four. She sells
the remainder for $2 per egg. How

» Self-Consistency. N

This technique prioritizes the most commonly occurring answer,
defined as a = argmaz,, f(a;) Where f(ai) denotes the frequency of
each answer al.

She eats 3 for breakfast, so |
she has 16 - 3 = 13 left. Then |
she bakes muffins, so she I The answer is $18.
has 13 - 4 = 9 eggs left. So

shehas 9 eggs * $2=$18. |

* Progressive-Hint Prompting.

Introduced by Zheng et al. (2023), Progressive-Hint
Prompting PHP) leverages a sequence of historical answers

{a...a""V} to enhance the current reasoning process ) and
facilitate the derivation ofthe subsequent answer (%) .



S SRR T/, R * Just in case you forgot

The final preparations - stay calm and steady,

« Communication Paradigm

in Figure 3, we propose Memory, Report, Re-
lay, and Debate communication paradigms each
corresponding to the Bus, Star, Ring, and Tree
network topologies, respectively. Assume in j-
th round of communication, given a set of LLMs
{M} = {mq,ms,...,m,}, the model m; gener-

ates the corresponding rationale r( 2 and the an-

1 1)
swer a,(j ) based on the (fr(“7 ) (3 ) where K
1s the set from which model mZ can receive reason-
ing processes. In the first round, we use the CoT

method proposed by Wei et al. (2022b) to generate
(rY, V) ~ B(r'", V| D, g).

That is what a nice guy | am.



“All roads lead to Rome.”
-Spanish Proverb
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Four paradigms, each with its own distinctive features.

* Memoy Bus

Any model, can access the reasoning chains and &
answers from all models. 0

Memory
This paradigm facilitates the fastest flow of AN BIC
Information and also incurs the highest (A
communication cost. (B
C]

Fully Visible
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Four paradigms, each with its own distinctive features.

* Report

There is a model mA as the central node, which
can obtain the rationale and answer from all other
models.

Both mb and mc only receive information from
mA and do not interact with each other.

Allows for rapid information flow, but it demands a
higher capacity for processing and analysis for the
central node.

Report
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Four paradigms, each with its own distinctive features.

» Relay

Each node is capable of receiving information
from the preceding node and transmitting its own
information to the subsequent node.

This mode can reduce the demands on the
information processing capacity of each node, but
it may result in a slower flow of information.
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Four paradigms, each with its own distinctive features.

 Debate

This mode adapted the tree topology to devise
the Debate paradigm which permits leaf nodes to
exchange information with each other, while
parent nodes are solely responsible for
aggregating information. Information flow is
directed upward from child to parent.

This communication paradigm strikes a

balance between the model’s information
processing capacity and the speed of information

flow.

Debate
D 60 O

() O
@lEl

Peers Visible



“Don't jump to conclusions.”
-English Proverb
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Precise calculations, methodical and orderly.

« Communication Volume

Measured by the number of
messages received, assuming
there are n models.

* Memoy

Every node receives information
from all other nodes, resulting in a
communication volume of.

Q 00606 A 00606
(A AN (A
o (B N (B) O
e ® G @z O

Memory Fully Visible Report Central Visible

* Report

The central node receives
information from n — 1 non-central
nodes, while each of the n — 1
non-central nodes receives,
iInformation from the central node.
In addition, each node can receive
information from its previous
round. Thus we have:

nh-1)+(n-1)+n=3n-2
Average volume for each node is:
{Bn-2)-n}/n=2-2/n
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Precise calculations, methodical and orderly.

* Relay

Each node receives information
from the preceding node and its
own information from the last
round, resulting in a
communication volume of 2n

Average volume for each node is:
2n-n)/2=n/2

The one on the right looks quite
challenging. 0006
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The communication volume for each pair
of child nodes is 4, and it is 3 for the
parent node. Consequently, a subtree’s
communication volume of 7.

The number of non-leaf nodes in a full

binary tree is (n—1) / 2, leading to a total
volume of 7(n-1) / 2

* Average volume for each node is:

Information under the same parent node
requires only one transmission.
Information from the farthest nodes needs
h — 1 transmissions, Thus we have:
Zh_l 22'—17:
S = 1=1
2h—1 _ 1




“All good things must come to an end.”
-English Proverb



LIRS, RTITEAARHIER

Termination condition: all good things must come to an end.

* There's more than one way to skin a cat.

» Consistent Output Termination

When the output of model in the j-th round is the same as the output in the
] — 1-th round.

* Majority Consesus Termination

LLMs cease communication with each other once a majority of them reach
an agreement.



“Think twice before acting.”
-Chinese Proverb
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Confidence evaluation mechanisms.

* In a communication with k rounds, model migenerates a set

of answers{a{", ..., a"} .Let f(a;) = maa#{ala = o’} denote the
number of the most frequently occurring answer from model
mi. Consequently, we obtain the model’s confidence level

C; =

fla;)

urn 1: 20 dozen cups are equivalent to 20 x 12 =
240 cups... The answer is $70.

Turn 2: One dozen is equal to 12, so 20 dozen
cups is 20 x 12 = 240 cups... A's solution is
accurate. So, the total cost is $1435.

Turn3: Let's first convert 20 dozen cups to a total
number of cups: 20 x 12 = 240 cups, ... Therefore,
the total cost of buying each cup is 90 dollars.

— In the current round.

Turn 1: First, we need to convert 20 dozen cups to

Low @

the total number of cups... Dividing both sides by
240: x = $70 Therefore, the total cost is $70.

Turn 2: Both A and B have provided their
solutions.... Dividing both sides by 240: ¢ = $70.
So. the cost of buying each cup is $70.

N
ll\
N High :

|
/ Confidence
[

|
/

Turn3: Based on the solutions provided by A and
B... x=$70 So each cup costs $70.

/
o
e

Figure 4: An illustrative comparison between a confident model and an unconfident model. Model A generates
three different answers over three communication rounds, indicating uncertainty about the answer, while Model B

A pic from the corresponding paper.

consistently adheres to a single answer.



Crescendo!
Here comes experments
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Validate ideas through experimentation.

 Tasks and Datasets

* Mathematical Reasoning
GSM8K MultiArith SingleEQ AddSub AQuA and SVAMP

SingleEq and AddSub involve relatively simple problems that do not require multi-step calculations.
MultiArith, AQUA, GSM8k, and SVAMP, are more challenging datasets that demand multi-step
reasoning to solve.

« Commonsense Reasoning
CommonsenseQA and StrategyQA

StrategyQA is a question-answering focused on open-domain questions, where the required reasoning
steps are implicit in the question. CommonsenseQA have been introduced to explore the
commonsense understanding, involving yes/no questions (or assertions).

« Symbolic Reasoning

Pengui and DateUnderstanding
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Validate ideas through experimentation.

* Baseline Details
. : -temperature = 1
Chain of Thought (COT) -Use GPT-3.5, while may incorporate Claude-2
« ComplexCoT -Results are the average performance and standard

deviation across five runs.

 Self-Consistency (SC)
* Progressive Hint Prompting (PHP)

 For simplicity, CoT-SC(10) is denoted the approach that employs the
CoT prompt method to sample 10 reasoning chains and then utilize the
SC method to select the answer



A table from the corresponding paper.

Method GSMSK  MultiArith  SingleEQ AddSub AQuA SVAMP Avg,
Single Reasoning Chain
CoT T9.12+050 97271065 92.80+0.27 86234052 55124103 TY.52+081 RBl.67
ComplexCoT 79.32+065 9540+050 91.34+033 84.46+086 56464059 77.70+054 8078
CoT (GPT-4) 04.90 97.80 93.10 89.30 77.50 90.50 90.51
Ensemble Methods
CoT-5C(3) R2.82+032 O9R20+043 93314012 87.19+047 62134130 RB1.98+049 84727
CoT-SC(5) 85474052 98.60+008 93.70+025 87.49+038 64.02+4095 83.76+081 8550
CoT-5C(10) 8TAT7+027  9B97+0.12  94.06+0.36  87.539+058 66384172 E4.96+033  B6.59
ComplexCoT-SC(3) 84.17+067 9743+031  9295+053 86.13+074 6047+155 81.44+079 R3ITT
ComplexCoT-SC(5)  87.26+033 98.13+022 94.02+029 86.48+061 62.05+240 83.86+092 85.30
ComplexCoT-SC(10) 89.23+031 98.23+037 94.21+0.16 86.58+058 64.96+191 85.58+0.87 86.46
PHP 85.10 98.00 92.90 85.30 60.60 83.10 84.16
Exchange-of-Thoughit
EoT-Memory 88.98+0.89 98.80+0.16 94.09+0.48 87.65+049 69.37+2.77 84.28+048 87.20
EoT-Report 88.61+083 = 99.031022 94.06:047 | 87.95:034 7031219 84.78:075 87.46
EoT-Relay 88.42+072  9897+016 94.13+049 87.59+058 [ TORBT+108 R85.04+031 87.50
EoT-Debate 88.52+0.76 98.90+0.17 94.25:+0.19 87.70+034 69.69+124 85.10+024 87.36

Mathematical Reasoning

« EoT has shown great improvement over CoT even surpassing strong baseline.
« Three GPT-3.5 with EoT surpassed a single GPT-4 with CoT.
« Addressing inherent shortcomings by incorporating external insights.



A pic from the corresponding paper.
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Validate ideas through experimentation.

80.0

74
79.5
721
701

681

Performance(%)
P
o

66|

641

62

76.0
LA (3 B k@
o e 0 P00
S S S e ON e oS RE 0
C:;i R N \g\é.@;;ép

SR
(a) CSQA. (b) StrategyQA.
Commonsense Reasoning

« EoT shows significant outperformance over CoT, particularly on the StrategyQA
dataset.

« Similar noteworthy gains are observed on the CSQA dataset.

 All four paradigms demonstrate superior performance compared to the CoT-
SC(10)



A pic from the corresponding paper.
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Validate ideas through experimentation.
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(c) Peguins. (d) Date Understanding.

Symbolic Reasoning
* On the Penguins dataset, EoT exhibit improvements compared to the CoT-SC.

» For the Date Understanding dataset, EoT shows even more significant
performance gains, with all four paradigms averaging a 2.1% improvement over
CoT-SC(10).



A pic from the corresponding paper.

FESE T IR AR IR

Validate ideas through experimentation.

74 I Majority Consensus
BN Consistent Output

Mey Reprt | Rela

Termination Condition

» Majority consensus termination, compared to consistent output termination,
shows notable improvements.

« Consistent output termination lacks a mechanism for collective negotiation,
making individual models susceptible to premature exit due to degeneration.
Therefore, majority consensus termination is deemed more suitable for
scenarios involving multiple model communication.



A pic from the corresponding paper.
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Confidence Evaluation

« Confidence evaluation demonstrates an average improvement of 2.92%
compared to the baseline.

* |t facilitates the decision to accept the other model's reasoning chains at an
earlier stage, effectively mitigating the interference of incorrect reasoning chains.



A pic from the corresponding paper.
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Figure 8: Number of communication rounds re-
quired to reach termination condition on SVAMP.

Round Analysis

» For the majority of samples, consensus on the answer can be reached within
three rounds of communication.



A pic from the corresponding paper.
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Validate ideas through experimentation.
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Cost Analysis

* Compared to CoT-SC(5), EoT reduces costs by 20% while improving
performance by 3%. EoT achieves performance similar to ComplexCoT-SC(10)
at only one-seventh of its cost.

» Given that the majority of samples conclude communication within three rounds,
EoT does not impose a significant computational burden.



A pic from the corresponding paper.
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Validate ideas through experimentation.
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Model Applocability

 Compared to CoT-SC(5), EoT demonstrates performance improvements of
3.2% on GPT-3.5, 1.0% on GPT-4, and 1.4% on Claude-2.

* The results indicate that EoT is adaptable to various LLMs and effectively
enhances performance across multiple models.



A pic from the corresponding paper.

FESE I I AR YA

Validate ideas through experimentation.
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Position Analysis
» Position of GPT-4 may have influence depends on the paradigm.

A configuration with two GPT-4 models and one GPT-3.5 significantly
outperforms one with two GPT-3.5 models and one GPT-4.

* Model diversity effectively boosts EoT's effectiveness.



Show down!
Let’s drop the conclusions
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Conclusion.

* The introduction of Exchange-of-Thought (EoT), a novel framework
facilitating cross-model communication to enrich models with external
iInsights.

* The framework includes four communication paradigms, and an in-
depth analysis covers communication volume and information
propagation speed.

* To address potential disruptions from incorrect reasoning, a
confidence evaluation mechanism is incorporated.

* Experimental results across mathematical, commonsense, and
symbolic reasoning tasks demonstrate EoT's superiority over strong
baselines with a cost advantage. Further investigations highlight EoT's
adaptability to various models, and the involvement of a diverse set of
models enhances its overall performance.
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Future Outlook.

e Future Outlook:

* The EoT framework may find applications in a broader range of natural language processing tasks,
including but not limited to text generation, question-answering systems, and dialogue systems.

» The EoT framework could be applied in the field of education, assisting students in tasks involving
mathematical reasoning, logical inference, and other complex reasoning tasks. Improvement and
Expansion Directions:

* Further optimize communication paradigms:

» Exploring additional communication paradigms or refining existing ones to adapt to different types of
tasks and interactions between models.

» Consider model diversity: Researching how to introduce a greater variety of model types to increase the
diversity of external insights, further enhancing the performance of the EoT framework.

» Consider real-time applications: Investigating how to apply the EoT framework in real-time scenarios,
such as dialogue systems or real-time inference tasks, to validate its effectiveness and feasibility in
practical applications.



“Success is not final, failure is not fatal: It is
the courage to continue that counts.”
-Winston Churchill
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A Limitations and Broader Impacts

Given the current constraints in communication and
analyiical capacities of open-source models (Fu
ct al, 2023a), as well as their substantial com-
putational resource requirements (Touveon et al.,
2023h: Chowdhery et al., 2022), we have not in-
cluded these models in our experiment at this stage.
However, we posit that open-source madels with
advanced comprehension and communication skills
have the potential o match or even exceed the per-
formance of commercial models (OpenAld, 2023;
Ouyang et al, 2022; Chowdhery et al, 2022),
through the collaborative exchange of insights.

A cntical factor in model communication is the
handling of long text. The current context windows
of these models limit our ability © incorporate a
hroader range of models in the communicanon pro-
cess. Recent works (Liu et al, 2023 Xiao et al.,
23, Wanyg ot al., 2023h; Tworkowski et al, 2025;
Chen et al., 2023; Ratner et al., 2023, inter alia)
have begun to overcome this mitation by equip-
ping meondels with the ability to process longer exts,
laying the foundation for increasing the number
of models involved in commonication. In addi-
fomn, our experiments indicate that model commu-
nication can acheve effective performance with
reduced computaticnal resources, aligning with
the sustainahle development goals of AT commu-
nity (Van Wynsberghe, 2021: Wu et al., 2022).

Furthecrmore, the concept of AT learning from
each other to foster collective improvement is a
focal pvint of current research (Hai et al., 2022h;
Ponnosamy et al., 2022; Lee et al., 2023). Our
aim #nd aspiration 1% to cultivale a collective miclh-
gence among large language models (Ha and Tang,
2122}, This approach not omly opimizes individ-
wal model performance but also contributes 1o the
broader Al research community™s parsuit of mose
advanced, collsborative AT systems.

B Datasets and Evaluation Metrics

Datasets  In Table 2, we meticulowsly detw] the
specifics and statistics of each dataset employed in



